

Homomorphic Encryption of Text Documents

 ة للمستندات النصي المتماثلالتشفير

Prepared By

 Omar Hanash

Supervisor

 Dr. Mudhafar Al-Jarrah

Thesis Submitted in Partial Fullfillment of the Requirements

for the Degree of Master in Cloud Computing

Department of Computer Science

Faculty of Information Technology

Middle East University

June, 2020

II

Authorization

III

Examination Committee Decision

IV

Acknowledgment

First, I give thanks, and praise to Allah for his mercy, and reconcile and for granting me

knowledge, confidence, patience to pass this Master thesis successfully.

Also, I would like to express my gratitude to my thesis advisor. Dr. Mudafar Al-Jarah

for the complete guidance throughout the thesis stages, and for the critical assistance in

designing and preceding the methodology of my research.

Finally, I thank all those, who have helped me directly or indirectly in the successful

completion of my research work.

Omar Hanash

The Researcher

V

Dedication

To the one who always kept me in her prayers, and did not save any effort to assist me

throughout my life, my Beloved Mother.

To My Father, who has been always struggling to assure us a decent life, who raised

me on the acts of mannerism, who kept admonishing me by the trust and honesty.

To my gorgeous Brothers who kept pushing me off the boundaries and assisted me in

all the possible means.

To the woman who struggled with me through this journey and never stopped

supporting and dedicating every possible means to support me through this journey, My

Wife

To the light of my eyes, to my heart, My Daughter.

I dedicate my effort

Omar Hanash

VI

Table of Content

Title .. I

Authorization .. II

Acknowledgment ... IV

Dedication ... V

Table of Content .. VI

List of Tables ... VIII

List of Figures .. IX

List of Abbreviations .. X

Abstract .. XI

Chapter One: Introduction .. 1

1.1 Research Topic: ... 2

1.2 Problem statement ... 2

1.3 Goals and objectives ... 4

1.4 Research questions: ... 4

1.5 Delimitations ... 5

Chapter Two: Background and Related Work ... 6

2.1 Cloud computing ... 7

2.2 Cloud Computing Services: .. 7

2.3 Homomorphic Encryption ... 8

2.3.1 History of Homomorphic Encryption ... 9

2.4 Categories of Homomorphic Encryption .. 10

2.4.1 Partially Homomorphic Encryption .. 11

2.4.2 Fully Homomorphic Encryption ... 11

2.5 Homomorphic Encryption Schemes in cloud storage challenges 13

2.6 Full-text search .. 14

2.7 Substitution cipher .. 15

2.8 Scrambling Text with Codes and Ciphers ... 16

Chapter Three Methodology and Proposed work ... 18

3.1 Overview ... 19

VII

3.2 Introduction ... 19

3.3 Objectives of the Proposed Model .. 20

3.4 Description of the Encryption Model .. 20

3.5 The Encryption / Decryption Algorithms .. 21

3.5.1 The LHB/UHB Swap Encryption Algorithm ... 21

3.5.2 The LHB/UHB Swap Encryption Algorithm ... 22

3.5.3 The LHB/UHB Swap Decryption Algorithm ... 23

3.5.4 Indexing the ciphertext words .. 25

3.5.5 Creating a Key .. 25

3.6 Searching the Ciphertext Documents .. 25

3.7 Summary ... 26

Chapter Four: Implementation and Experimental Results 27

4.1 Overview ... 28

4.2 Introduction ... 28

4.3 Datasets ... 28

4.4 Implementation ... 29

4.4.1 Application modules .. 29

4.5 Experimental results .. 31

4.5.1 Evaluation of the Encryption function ... 34

4.6 Search results .. 35

4.7 Summary ... 37

Chapter Five: Conclusion and Future Work ... 39

5.1 Conclusion... 40

5.2 Future Work .. 40

References : ... 42

VIII

List of Tables

Chapter Number.

Table Number
Contents Page

Table 4.1 Experimental Result 24

Table 4.2 Evaluation Of Encryption Function 27

Table 4.3 Time per KB 28

IX

List of Figures

Chapter

Number. Figure

Number

Contents Page

Figure 4.1 CloudCrypto System Diagram 22

Figure 4.2 Plaintext 25

Figure 4.3 Ciphertext 26

Figure 4.4 Search Result 29

X

List of Abbreviations

Abbreviations Meaning

HE Homomorphic Encryption

PHE Partial Homomorphic Encryption

FHE Fully Homomorphic Encryption

RSA Rivest-Shamir-Adleman

Enc Encryption

DataSet 1 Pride and Prejudice

DataSet 2 The Works of Edgar Allan Poe

DataSet 3 Alice's Adventures in Wonderland

DataSet 4 ION

DataSet 5 A Journal of the Plague Year

DataSet 6 The Adventures of Sherlock Holmes

DataSet 7 The Moby Dick; Or, The Whale

DataSet 8 The Yellow Wallpaper

DataSet 9 Frankenstein; Or, The Modern Prometheus

DataSet10 Importance of Being Earnest: A Trivial Comedy

VC++ Visual C++

XI

Homomorphic Encryption of Text Documents

Prepared by:

Omar Hanash

Supervised by:

Dr. Mudhafar Al-Jarrah

Abstract

The big expansion of sensitive data stored on cloud computing platforms has

focused the attention on the need for more secure data protection technologies.

Homomorphic encryption has emerged as an important approach to protect cloud-based

data by allowing operations on the encrypted data to be carried out without the need for

decrypting the data while it is on the cloud. The work in this thesis extends the

homomorphic encryption approach to deal with securing text documents that are stored

on the cloud, by allowing the encrypted text documents to be searched using encrypted

queries, thereby to make the query and its results ambiguous to a potential intruder. A

homomorphic text encryption model is presented which provides text document

encryption, query encryption, and ciphertext documents search using ciphertext queries

based on ciphertext word index. The developed encryption algorithm performs half-byte

swapping of character pairs directed by random numbers generated using a 16-decimal

digit secret key that is used in the encryption and decryption processes. The proposed

model has been implemented as a working encryption system using the C++

programming language. Experimental work was carried out using a corpora of 10 public

text documents in the English language ranging in size from 26 KB to 1.2 MB.

Performance analysis was carried out, the results showed that the average encryption

time per KB was 288 milliseconds, while the average decryption time per KB was 160

milliseconds. Accuracy of the encryption system was evaluated by comparing the

decrypted documents with the original plaintext documents, which yielded complete

equivalence between every pair of documents. The thesis ends with conclusions and

suggestions for future work.

Keywords: homomorphic, encryption, decryption, text document, ciphertext,

plaintext, cloud computing

XII

النصية لمستنداتالتشفير المتماثل ل
عمر الحنش: اعداد
 د. مظفر الجراح: اشراف

 الملخص

ركز التوسع الكبير في تخزين البيانات الحساسة على منصات الحوسبة السحابية الانتباه على
الحاجة إلى تقنيات حماية البيانات الأكثر أمانًا. برز التشفير المتماثل كوسيلة مهمة لحماية

لحاجة البيانات المخزنة في السحب من خلال السماح بتنفيذ العمليات على البيانات المشفرة دون ا
إلى فك تشفير البيانات أثناء وجودها على السحب الحاسوبية. ان العمل في هذه الرسالة يساعد
على توسيع التشفير المتماثل للتعامل مع تأمين المستندات النصية المخزنة على السحب
الحاسوبية، من خلال السماح بالبحث في المستندات النصية المشفرة باستخدام الاستعلامات

شفرة ، وبالتالي جعل الاستعلام ونتائجه غامضة بالنسبة إلى متسلل محتمل. يتم تقديم نموذج الم
تشفير النص المتماثل الذي يوفر تشفير المستند النصي وتشفير الاستعلام والبحث في مستندات
النص المشفر باستخدام استعلامات النص المشفر بناءً على فهرس النص المشفر. تقوم خوارزمية

لتشفير المطورة بإجراء تبديل نصف بايت لأزواج الأحرف الموجهة بواسطة أرقام عشوائية تم ا
رقمًا عشريًا يتم استخدامه في عمليات التشفير وفك 61إنشاؤها باستخدام مفتاح خاص مكون من

ذ و تم تنفي .++ C التشفير. تم تنفيذ النموذج المقترح كنظام تشفير يعمل باستخدام لغة البرمجة
مستندات نصية عامة باللغة الإنجليزية تتراوح في 61العمل التجريبي باستخدام مجموعة من

ميجابايت. أظهرت النتائج أن متوسط وقت التشفير لكل 6.6كيلوبايت إلى 61الحجم من
مللي 611مللي ثانية ، بينما كان متوسط وقت فك التشفير لكل كيلوبايت 622كيلوبايت كان

تقييم دقة نظام التشفير من خلال مقارنة المستندات التي تم فك تشفيرها مع مستندات ثانية. تم
النص العادي الأصلية ، والتي أسفرت عن معادلة كاملة بين كل زوج من المستندات. الأطروحة

 تنتهي باستنتاج واقتراح للعمل في المستقبل.

نص مشفر، نص عادي، الحوسبة الكلمات المفتاحية: التشفير، فك التشفير، مستند نصي،
 السحابية، التشفير التماثلي

1

Chapter One

Introduction

2

1.1 Research Topic:

This thesis investigates Homomorphic Encryption of text documents to develop a

secure text-based search over the cloud.

Cloud computing is delivering the traditional computing services that can be found

at any premises that include services like servers, storage, databases, networking,

software, and in recent days AI over the Internet, on remote data centers. Individuals

and companies whether they are large or small can benefit from the cloud services and

they only pay for the cloud services they use only, which makes the clouds sometimes a

cheaper solution.

Homomorphic encryption is a ciphering method that allows any data to remains

encrypted while it is being processed and manipulated. Homomorphic Encryption

allows data owners from individuals or company owners or sometimes the authorized

third parties (such as cloud providers) to apply the functionality to encrypted data

directly without the need to disclose data. The Homomorphic encryption system is

similar to other forms of public encryption as it uses a public key for data encryption

and only allows the individuals with the corresponding private key to access the

unencrypted data. However, what distinguishes it from other forms of encryption is that

it allows algebraic operations and allows users to perform a variety of mathematical

operations on the encrypted data.

1.2 Problem statement

Cloud storage has the advantages of offering low-cost services for the cloud user,

with high scalability options, and easy to manage platforms. Having premises or

individuals confidential and sensitive data is saved to third parties cloud providers

3

especially cheap ones, that we can say that it has changed how the individuals and

premises save their data has raised some questions to some of the cloud users, which

made some of the corporates have private clouds computing, but that also never solves

the issue of the data security. Many companies have to stick with old fashioned and

known storage model to overcome their concerns. One of these concerns was accessing

the data by unauthorized personnel or data theft, so encrypted storage was adopted.

With the arrival of the cloud computing paradigm and the proliferation of online

services, the Internet stores not only information for sharing, but also a large amount of

personal data demanding restricted access and privacy protection. Secure management

of personal data stored online is an increasingly important issue, which demands a

balance between data confidentiality and availability. Technologies that can enable

secure online data management are going to be critically important for cloud computing

to reach its full potential.

Traditional privacy protection for online personal data focuses on access control

and secure data transmission to ensure that the data can be securely transmitted to the

server and unauthorized people cannot access the data. Once the data arrives at the

server, the server decrypts the data and operates on plaintext in order to provide services

to users, such as search and data summarization. This makes the user’s private

information vulnerable to untrustworthy service providers and malicious intruders. For

example, personal photo albums can potentially be viewed by a system administrator if

stored online in plaintext. Encryption of the data stored on the server using traditional

cryptographic ciphers directly makes it difficult for the server to process the data, and

for the user to retrieve information from the encrypted database. Therefore, it is both

desirable and necessary to develop technologies for information retrieval over encrypted

4

databases that can protect users’ privacy without sacrificing the usability and

accessibility of the information.

1.3 Goals and objectives

Implementing a new method to encrypt sensitive and confidential text documents

before uploading them to the cloud where they are being stored, so when using this

approach, the cloud server employees and anyone in the middle such as hackers or

unauthorized personnel will not be getting any useful information about the files, as

the server will be hosting only the ciphertext, encrypted index, and the encrypted

query. Therefore, using this approach will guarantee the confidentiality not only of the

stored documents but also of the query and its results.

The following objectives are sought to be realized:

1. The design of a new algorithm that will achieve the homomorphic encryption of

text documents, based on half-byte swapping guided by random numbers that

are generated from a secret key.

2. Implementation of the designed algorithm.

3. Dataset selection for the evaluation phase.

4. Performance analysis of the implemented system using the selected dataset.

1.4 Research questions:

1. How will the cloud-based text documents be encrypted homomorphically and

how will the exncrypted documents be searched without decrypting the

documents or the query anywhere outside the local computer?

2. What will be the encryption key, what is its data type?

3. What will be the algorithm steps that will achieve homomorphic encryption and

search on text document word

4. What are the content and structure of the word index and will it be stored in

plaintext or ciphertext ?

5

5. Where will the encryption and decryption of the text documents be performed ?

1.5 Delimitations

The work will not involve numeric manipulation or algebraic processing on

numeric data. Also, the text search will be based on single-word terms, which can be

extended later on to phrases and multi-word terms.

6

Chapter Two

Background and

Related Work

7

2.1 Cloud computing

Cloud computing's biggest advantages are that the cloud is available at any time the

user wants to access it, network access, resource pooling, elasticity, and measured

service. Availability means that cloud users can access and they can manage their

computing resources at any time and from anywhere, as long as the clouds are

connected to the internet and up. Pooled resources mean that cloud users can use from a

pool of computing resources if they need more resources to be added to their current

cloud if the current setup they have is not enough. Elasticity means that services can be

scaled larger or smaller, depending on the cloud user requirements. Moreover, the cloud

user will pay only for what is being used from the resources of the cloud. (Tharam

Dillon et al. 2010)

2.2 Cloud Computing Services:

There are mainly three services that the cloud provides provide for their customers, the

most popular services are (Junjie Peng et al. 2009)

Platform as a Service (PaaS): The cloud provider provides a platform for the

creation of software that is delivered to customers over the web. PaaS allows users to

create applications easily without the hassle of buying and maintaining the software or

infrastructure.

Software as a Service (SaaS): The cloud provider provides the applications that are

needed by the cloud users as a service. Applications are connected to customers' cloud

via the Internet and applications are owned and operated by customers. Ex: Google

Apps, Zoho, Kayako…etc

8

Infrastructure as a Service (IaaS): The cloud provider delivers the computing

infrastructure such as storage or server space, servers, and network infrastructure as

on-demand service. Instead of purchasing the computer hardware from vendors, cloud

users can order IaaS based cloud and they pay per what they use.

Many large companies like Google, Amazon, Microsoft, IBM, Alibaba, and many

more are developing cloud infrastructure to providing services to those who wish to

host their work or rent a cloud server through the internet. Cloud computing has

offered a new mean of utilization the computing resources by sharing the resources

with several users, and each user can just pay for what is being used from resources

without and data can be accessed at any time and anywhere as long there is an

internet connection between the cloud users and the cloud providers.

2.3 Homomorphic Encryption

Homomorphic Encryption is considered different from the traditional and known

encryption methods by permitting computations to be done to the ciphered data

(encrypted data) directly without the need of decrypting the data or any access to the

secret key used to encrypt the original data. The result of the computation is still in an

encryption form after all the needed computation is done on the encrypted data the

result is still encrypted until the user decrypts the data again to see the results. The

outcome of the computation data that happens on the Encrypted data is the same result

of the computation done on the plain data itself. (Amit Joshi et al. 2019)

9

2.3.1 History of Homomorphic Encryption

Ronald Rivest and Leonard Adleman suggested the concept of homomorphic

encryption in 1978. However, for 30 years the progress is very slow. In 1982, Shafi

Goldwasser and Silvio Micali proposed their encryption system that able to encrypt one

bit in additive homomorphic encryption. Pascal Paillier 1999 suggested another additive

homomorphic encryption. In 2005, Dan Boneh, Eu-Jin Goh, and Kobi invented a

security system of encryption, which conducts only single multiplication but a large

number of additions. In 2009, Craig Gentry constructs a fully homomorphic encryption-

based system that able to conduct both addition and multiplication at the same time.

(Jabbar 2009)

The data stored in the cloud will not be in an encrypted format. If it is stored in an

encrypted way that can solve issues like Availability, Data security, and Third-party

control. But the problem is the user will not be able to depend on the cloud service

provider to carry out the computation of data. For this the data will be decrypted first

then will be shipped to the user for computation. So the cloud provider has to decrypt

the data first thus nullifying the issues of privacy and confidentiality, perform the

computation, and then send the result to the user (Kanagavalli 2014). Suppose if the

user could carry out any arbitrary computation on the hosted data, then without the

cloud provider learning about the users’ data, computation is done on the encrypted data

without prior decryption. In this scenario, the promise of homomorphic encryption takes

a call (Payal 2014).

 Homomorphic encryption schemes are methods that allow the transformation of

ciphertexts C(M) of message M , to ciphertexts C(f(M)) of a computation/function of

10

message M, without disclosing the message. Generally, an encryption scheme contains

three-step algorithms. They are

1. Key Generation - creates two keys i.e. the secret key sk

2. Encryption - encrypts the plaintext m with the secret key sk to yield ciphertext c.

3. Decryption - decrypts the ciphertext c with the secret key sk to retrieve the

plaintextm.

In addition to the above stated three steps, homomorphic encryption schemes

involve another 4 steps namely Storage, Request, Evaluation, and Response.

In the cloud-based environment, the key generation takes place at the client-side

and encrypts the data with the encryption key and sends the data to the cloud server

along with sk . The encrypted data is stored in the database along with the key.

Whenever the client wants to operate it sends the request to the service provider. The

service provider forwards the request to the processing server .the processing server

operates as per request. The service provider then returns the processed result to the

client in the response phase. The client finally decrypts the result returned by the service

provider with the secret key sk. Among the homomorphic encryption schemes available

depending on the operations performed on data, can be classified into three main

categories namely: Partially Homorphic Encryption(PHE), Some What Homomorphic

Encryption (SWHE) and Fully Homomorphic Encryption(FHE) .

2.4 Categories of Homomorphic Encryption

Homomorphic encryption can be classified into 2 main parts: Partially

Homomorphic Encryption (PHE) and Fully Homomorphic Encryption (FHE). (Gentry

2009)

11

Homomorphic Encryption (PHE), such as the traditional and knows RSA, ElGamal,

Paillier, and other known encryption methods enables executing algebraic operations to

the ciphertext (Encrypted data) that can be either multiplication or addition operation.

Constructing a Partially Homomorphic Encryption that can brace both algebraic

operations simultaneously was very hard, even though Boneh et al. came near. Gentry

in the year 2009 had managed to make the two arithmetic operations with one another.

2.4.1 Partially Homomorphic Encryption

Partially Homomorphic Encryption PHE is an old and known method for years, as it

enables us to operate on the ciphered data ((Encrypted data)) without the need to

Encrypt it first, these operations are algebraic operation like additions and

multiplication. Addition PHE like Paillier and multiplicative like ElGamal

cryptosystems. (Moore C 2014)

Homomorphic Encryption is considered to be as multiplicative if there is a function

to find the result of Enc(x * y) from Enc (x) and Enc (y) not knowing the original values

of x and y. Such as RSA and ElGamal Algorithms.

Homomorphic Encryption is considered to be as multiplicative if there is a function

to find the result of Enc(x + y) from Enc (x) and Enc (y) not knowing the original

values of x and y. Such as Paillier algorithms.

2.4.2 Fully Homomorphic Encryption

As we have discussed earlier the Partially Homomorphic encryption permits the

homomorphic computation on only one mathematical operation, so it can be an additional

function or a multiplication function, on the ciphered data (Encrypted data).

12

The challenge to develop of a scheme or a function that permits unlimited additions or

multiplications to be done on the ciphertext was a challenging issue until Craig Gentry in the

year 2009 has solved this issue and proposed the 1st holy grail solution of Fully Homomorphic

Encryption FHE.

What Gentry proposed and worked on was supporting both addition and multiplication on

ciphertext at the same time, by performing AND ∧ and XOR⊕ on the ciphertext. In algebra,

there are too many methods that can be used to turn the complex function into more simple

ones. With this technique, a function can be transformed to use only a specific logical

operation (e.g. ∧ or ⊕).

For example, ¬A can be expressed as A ⊕ 1, or it is expressed as A ∨ B, this can be

converted into (¬A) ∧ (¬B), then converted into (A ⊕ 1) ^ (B ⊕ 1). By utilizing such techniques,

all functions can be converted into a series of (∧) and (⊕) operations. And that was the basis

of what Gentry has worked on and proposed.

Gentry has introduced the lattice-based cryptography. Gentry has proposed fully

homomorphic encryption relying on the following scenario, starting from somewhat

homomorphic encryption using ideal lattices (Gentry 2009) are limited to evaluating low-

degree polynomials over encrypted data. It is limited because each ciphertext is noisy in some

sense, and this noise grows as one adds and multiplies ciphertexts until ultimately the noise

makes the resulting ciphertext indecipherable. Next, it squashes the decryption procedure so

that it can be expressed as a low-degree polynomial, which is supported by the scheme.

Finally, it applies a bootstrapping transformation, through a recursive self-embedding, to

obtain a fully homomorphic scheme. (Gentry 2010)

In a mathematical perspective the Fully Homomorphic Encryption scheme is

quadrant polynomial algorithms (𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐, 𝐸𝑣𝑎𝑙) where:

13

 (𝜆): The algorithm of key generation.

 (𝑚, 𝑝𝑘): The encryption algorithm, where it takes a plaintext 𝑚 and a public key

𝑝𝑘 as inputs and outputs a ciphertext 𝑐.

 (𝑐, 𝑠𝑘): Is the decryption algorithm, takes as input a ciphertext 𝑐 and a secret key 𝑠𝑘

and outputs a plaintext 𝑚.

 𝐸𝑣𝑎𝑙(𝐶, 𝑐1, …, 𝑐𝑛): This is an evaluation algorithm, takes as input 𝐶 and

ciphertexts 𝑐1, … , 𝑐𝑛 and verifies 𝐷𝑒𝑐(𝐸𝑣𝑎𝑙(𝐶, 𝑐1, …, 𝑐𝑛), 𝑠𝑘) = 𝐶(𝑚1, …, 𝑚𝑛).

2.5 Homomorphic Encryption Schemes in cloud storage challenges

The following are the few challenges that HE schemes provide which we have

considered in our work: a) Efficiency b) Robustness c) Delay. PHE algorithms are very

effective to ensure the security of applications and data in the model where data can be

encrypted during the transfer phase. They are very useful in the case of a cloud service

model of SaaS or PaaS but not as useful in the IaaS model as it requires that the secret

key is transmitted at a given time usually while booting the VM (Mallaiah 2014). The

Robustness of HE scheme depends on the size of the encryption key. But the use of

large size key makes the system too slow. The large size of public keys affects the size

of ciphertext, encryption time, decryption time, and data processing time. The

parameters that have to be considered while using Homomorphic Encryption schemes

are a)The size of the encryption key b)The effect encryption key size on the ciphertext

c)Time taken for encryption d)The decryption time and e)Size of the secret key . The

existing works (Mbarek et al. 2016) (Sushila et al. 2016) concentrates on providing

security to the data where the level of noise grows linearly with the multiplicative depth

of the data being evaluated. To overcome this issue a technique called modulus

14

switching is adopted. Let c be a valid encryption of m under s modulo q and that s is a

short vector. Suppose also that c’ is a simple scaling of c. i.e c’≡c mod 2 means that c’

is a valid encryption of m under s modulo p using usual decryption equation. This

method allows the change of inner modulus in the decryption equation. Here the

correctness of decryption under the same secret key. This technique is called as modulus

switching technique. Formally the method can be defined as For integer vector x and

integers q>p>m , x’ is defined as x’←Scale(x,q,pr,r) and x’ is the R –vector closest

to(p/q).x that satisfies x’=x mod r (Kanagavalli 2015).

2.6 Full-text search

As computing and computing power evolve, regardless of data storage or

transmission in the network, it is always advised that personal of corporate data must be

encrypted. Data encryption can ensure its security, confidentiality, and integrity, and

avoid theft and modification of data by unauthorized users when it is being stored or

being transferred. The Homomorphic encryption algorithm was proposed by Rivest et

al. In 1978, researchers later called it the "Holy Grail" (Genty 2009) in the field of

cryptography. The feature of the algorithm is to perform arithmetic operations on the

encryption text without knowing the key. After decrypting the ciphered data that has the

arithmetic operations done on, the result should be equivalent to the corresponding

operation that will be on the in plain text, F(Enc (m)) = Enc (F(m)). In the year of 2009

Gentry introduced the Fully Homomorphic Encryption scheme (all-homomorphic

encryption scheme based on ideal lattice over polynomial ring). In 2011, Coron (Coron

et al. 2011) has made some modification and improvements on what has Gentry

proposed scheme and introduced a chart that adding public keys to encryption text in

15

product form can reduce the size of public keys, which is the size of the public key ο

(λ7). (Lijuan Wang , 2019)

Access control is controlling the authorized users' access to protected network

resources, and preventing unauthorized users from modifying or reviewing sensitive

data, and preventing illegal users from illegally accessing data through certain

permissions, to achieve the security and safety of network resources.

Retrieval of ciphertext from the cloud can be done via various ways and methods,

but in this study, we will be achieving it by is recovery based on the security index,

which is the indexing of keywords in the ciphertext and the search for keywords if they

are in the index. Let one depend on retrieving the ciphertext clearing, the method is to

find the keyword and each word matches the ciphertext and confirms whether the

keyword exists. Encrypting text retrieval is a continuous improvement from a simple

recovery of a single keyword to search for multiple keywords, from low accuracy to

high accuracy. (Lijuan Wang , 2019)

2.7 Substitution cipher

In cryptography, a substitution cipher is a method of encrypting by which units

of plaintext are replaced with ciphertext, according to a fixed system; the "units" may be single

letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth.

The receiver deciphers the text by performing the inverse substitution.

Substitution ciphers can be compared with transposition ciphers. In a transposition cipher,

the units of the plaintext are rearranged in a different and usually quite complex order, but the

units themselves are left unchanged. By contrast, in a substitution cipher, the units of the

plaintext are retained in the same sequence in the ciphertext, but the units themselves are

altered.

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Encrypting
https://en.wikipedia.org/wiki/Plaintext
https://en.wikipedia.org/wiki/Ciphertext
https://en.wikipedia.org/wiki/Cipher
https://en.wikipedia.org/wiki/Transposition_cipher

16

There are a number of different types of substitution cipher. If the cipher operates

on single letters, it is termed a simple substitution cipher; a cipher that operates on

larger groups of letters is termed polygraphic. A monoalphabetic cipher uses fixed

substitution over the entire message, whereas a polyalphabetic cipher uses a number of

substitutions at different positions in the message, where a unit from the plaintext is

mapped to one of several possibilities in the ciphertext and vice versa.

2.8 Scrambling Text with Codes and Ciphers

There are many different ways to “scramble” text or hide its meaning in such a way

that only authorized persons (at least in theory) are able to read it. This scrambled

(encrypted) text is called cipher text. A method for encrypting text is called a cipher or a

code. Technically, a code uses substitution at the word or phrase level, whereas a cipher

works at the level of individual letters or digits. The two words are often used

interchangeably, but computerized cryptographic techniques generally rely on ciphers

that operate on the binary form of the data by applying an algorithm (a mathematical

calculation). Some common cipher/code types are:

 Substitution

 Transposition

 Obscure languages

Substitution Ciphers Simple substitution is a method often used by children in their

first experiments with secret code. A substitution cipher merely substitutes different

letters, numbers, or other characters for each character in the original text. The most

straightforward example is a simplistic substitution in which each letter of the alphabet

is represented by a numerical digit, starting with 1 for A. The message goodbye then

becomes 7-15-15-4-2-25-5. This code is obviously extremely easy to break. The Caesar

17

Cipher used a simple shifting method, in which each letter of the message is represented

by the letter two places to the right in the alphabet (A becomes C, B becomes D, and so

on). Other substitution methods can be much more difficult to crack. For example, if

two parties exchanging communications have an identical copy of a particular book,

they might create a message by referencing page, line, and word numbers (for example,

73-12-6 tells you that the word in the message is the same as the sixth word in the

twelfth line on page 72 of the code book). In this case, anyone who doesn’t have a copy

of the book (and to cite the correct pages, it must be the exact same edition and print

run) will not be able to decipher the message. Some types of substitution ciphers are:

 Monoalphabetic substitution: Each letter is represented by another letter or

character in a one-to-one relationship.

 Polyalphabetic substitution: Different cipher-text characters can represent the

same plain-text letter, making it more difficult to decrypt messages using the

frequency analysis technique. Renaissance architect and art theorist Leon

Battista Alberti is credited with developing this technique, earning him

recognition as the “father of Western cryptography.”

 Polygraphic (block) cipher: Several letters (or digits when we’re dealing with

binary data) are encrypted at the same time, using a system that can handle all

the possible combinations of a set number of characters.

 Fractionation: Multiple symbols are substituted for each plain-text letter, and

then the letters or digits are transposed.

18

Chapter Three

Methodology and

Proposed work

19

3.1 Overview

This chapter presents the proposed work, which is developing a new Encryption and

Decryption techniques of text documents based on the concept of Homomorphic

Encryption (HE), to store the ciphertext documents on the cloud and to search these

documents using ciphertext queries. Using this approach, neither the search queries nor

the search results will be in plaintext format, hence an intruder who might intercept the

query or its result will not comprehend what is being searched. The study will extend

the Homomorphic approach into text search through algorithm design to be followed by

experimental work. This chapter consists of the following sections: Section 3.2

introduces the chapter topic and gives the motivations behind building the new

algorithms. Section 3.3 presents the objectives of the proposed model. Section 3.4

describes the proposed encryption model. Section 3.5 presents the encryption /

decryption algorithms. Section 3.6 presents the search process. Section 3.7 gives a

summary of this chapter.

3.2 Introduction

 Homomorphic Encryption is an encryption scheme that allows users to

perform arbitrary operations on ciphered data without the need to decrypt it, ensuring

the same results when performing these operations on the same plaintexts. As discussed

in Chapter Two, there are three types of Homomorphic Encryptions; Fully

Homomorphic Encryption, Partial Homomorphic Encryption, and Somewhat

Homomorphic Encryption. In this study, we will be using the Fully Homomorphic

Encryption as it allows a large number of evaluations to be processed on the ciphertext

and most of the studies in the field use the arbitrary methods.

20

3.3 Objectives of the Proposed Model

The proposed model is designed to fulfill the following objectives:

1. Encrypt words content of the plaintext document using a secret key.

2. Create an index of the words of the ciphertext document.

3. Encrypt a search query using the same secret key.

4. Search the ciphertext index using the ciphertext query to locate matching

documents.

5. Decrypt the ciphertext document using the same secret key.

3.4 Description of the Encryption Model

The proposed encryption model is based on the assumption that the plain text

documents are encrypted and the resulting ciphertext documents are uploaded to the

cloud. The encryption process will create an index of the ciphertext words.

Subsequently, an authorized user who has the encryption secret key can encrypt his

query words, search the cipher words index to locate the ciphertext documents that

match the query, and allow the user to download the found cipher text documents. The

downloaded ciphertext document will be decrypted using the proposed decryption

algorithm.

Using this approach, the cloud server personnel and anyone in the middle as hackers

or unauthorized personnel will not be getting any useful information from the uploaded

files, as the server will be hosting only the ciphertext, encrypted index, and the

encrypted inquiry. Therefore, using this approach will guarantee the transparently

querying to the cloud server.

21

3.5 The Encryption / Decryption Algorithms

Character Pair Halves Swapping is the principal method that will be used in the encryption

algorithm, where the text document is read via the encryption algorithm and will produce the

ciphertext. The proposed algorithm is built to go through each word of the text document and

do character pairs halves swapping within each word, guided by random numbers. Each

character (byte) within a word is split into 4-bit halves, Left Half-Byte (LHB), and Right Half-

Byte (RHB). Swapping of half-bytes between every two consecutive characters is carried out,

taking into account the swapping between characters does not generate special or control

characters. In the case of words that contain an odd number of characters, the last character

will be considered a space character. Also, Character Pair Halves Swapping algorithm will have

to ensure that the order of the characters in their word is preserved when applying the

swapping steps.

3.5.1 The LHB/UHB Swap Encryption Algorithm

In this algorithm, the encryption will be done for the words and numbers but when

coming to special characters it will be left as-is so that the text search work on words

without consideration for any special characters as most text search applications deal

with special characters as having special functions. A word can contain letters, digits, or

“-“.

The lower half-bytes (LHB) or the upper half-bytes (UHB) are swapped depending

on a random number of 0 or 1 that applies to a character pair within a word. For

example, if we have a random sequence of 0 0 1 1 then the first and second pairs have

LHB swapping while the third and fourth pairs have UHB swapping. If the word

contains an odd number of characters, the LHB of the end character is replaced with a

reversible special value.

22

If a pair contains the same character (“AA”) swapping will not affect so instead the

LHBs of the two characters are replaced with a reversible value as in the case of the odd

end-character.

3.5.2 The LHB/UHB Swap Encryption Algorithm

The Algorithms Structure for the LHB/UHB Swap is constructed as follows.

1. Read a 16 decimal digit integer to be used as the encryption/decryption as a secret

key (K)

2. Call the Seed function using K

3. Call the Random function 30 times where the random values should be 0 or 1 and

store the random numbers in an array called R

4. Process the plain-text document as follows:

 While Not EOF (plain-text file)

 Read text line in LINE

 Repeat for words in LINE /* Repeat 1

Get next word and store in WORD (a word is terminated by, ; : space ! @ #,

etc), it can contain letters, digits, -

 WL = Word length

 NP = Number of pairs in WORD (not including the last digit if WL is odd)

PairPos = 0 /* Pair Sequence in the word

Repeat /* Repeat 2

 PairPos +=1

Extract next char pair from WORD and store in C1 and C2

If C1 = C2

 Replace LHB of C1 and C2 with Hex F – LHB

Else

If R(PairPos) = 0

 Swap LHB of C1 with lower HB of C2

Else

 Swap UHB of C1 with UHB of C2

23

Return C1 C2 to WORD

Until PairPos = NP /* End of Repeat 2

If WL is odd

 C-End = WORD(WL)

 Replace LHB of C-End with Hex F – LHB

 Return C-End to the last the end character in WORD.

Return WORD to LINE

Until end of line /* Repeat 1

Save LINE to encrypted file

End of While

3.5.3 The LHB/UHB Swap Decryption Algorithm

This algorithm reverses the LHB-UHB swap steps starting with the same secret key.

1. Read the secret key integer that is used in encryption (K)

2. Call the Seed function using K

3. Call the Random function 30 times where the random values should be 0 or 1 and

store the random numbers in an array called R

4. Process the cipher-text document as follows:

 While Not EOF (cipher-text file)

 Read text line in LINE

 Repeat for words in LINE /* Repeat 1

Get next word and store in WORD (a word is terminated by , ; : space ! @ #, etc), it can

contain letters, digits, -

 WL = Word length

 NP = Number of pairs in WORD (not including the last digit if WL is odd)

24

PairPos = 0 /* Pair Sequence in the word

Repeat /* Repeat 2

 PairPos +=1

Extract next char pair from WORD and store in C1 and C2

If C1 = C2

 Replace LHB of C1 and C2 with Hex F – LHB

Else

If R(PairPos) = 0

 Swap LHB of C1 with lower HB of C2

Else

 Swap UHB of C1 with UHB of C2

Return C1 C2 to WORD

Until PairPos = NP /* End of Repeat 2

If WL is odd

 C-End = WORD(WL)

 Replace LHB of C-End with Hex F – LHB

 Return C-End to the last the end character in WORD.

Return WORD to LINE

Until end of line /* Repeat 1

Save LINE to decrypted-text file

End of While

25

3.5.4 Indexing the ciphertext words

To facilitate the search process of the ciphertext document, each cipher word

generated by the encryption algorithm is added to an index file, with the elimination of

duplicate words. At the end of the encryption process, an index file is written that will

be used in the search process.

3.5.5 Creating a Key

An integer of a maximum of 16 decimal digits will be used as the secret key. To

increase the robustness of the encryption model, it is possible to use a larger key size,

multiple of 16 decimal digits, and to compress the large key into 16 digits using perfect

hashing. The process of using the secret key to generate the random numbers for

encrypting the words will involve choosing a random number of 1 or 0 for each

character pair swapping, as shown in section 3.4.3. The same method will be used to

encrypt the search query and to decrypt the ciphertext document which matches the

search query.

3.6 Searching the Ciphertext Documents

Storing data in the cloud in an encrypted form is a very common procedure most

companies do these days, as encrypting the stored data on the cloud will keep the

sensitive data away from hackers or be accessed by unauthorized users. Searching

encrypted data using an encrypted query is one solution to this issue, as no one can

know the ciphered text or the ciphered query or the result of the search. Fully

homomorphic encryption allows us to query on the encrypted data with an encrypted

query.

26

To search the ciphertext document, the search words are encrypted using the

LHB/UHB Swap Encryption algorithm. The generated search cipher words are used to

search the index file in order to find the ciphertext document. After the search on the

ciphertext, an index is done a message will be appearing to the user with the search

result and where the query word is located. The result will contain the place of where

the inquired word is located at (at which indexed document), then the user can

download the ciphertext documents and decrypt them on his work station to generate

the original plain text documents as they were before they were encrypted with one of

the encryption algorithms.

The search will not involve multi-term information retrieval type of queries as this

is outside the scope of this research.

3.7 Summary

In this chapter, a new way of encrypting data is proposed as a solution to the

homomorphic encryption of documents that will be stored on the cloud. This is

achieved by converting the words in each document to its 8 bits binary origin then a

swapping will be applied to these characters ensuring that the resulted words don’t

contain control or special characters. Then a search done on the index files that have

been generated by the Encryption process and the result will be decrypted to a plain text

format and given to the user.

27

Chapter Four

Implementation and

Experimental Results

28

4.1 Overview

This chapter presents the implementation of the proposed model and the

experimental results of the proposed algorithm of homomorphic encryption. This

chapter organized as the following: section 4.2 presents a description of the

implementation of the proposed algorithm as a working system; section 4.3 provides an

introduction to the conducted experiments; section 4.4 presents the datasets which are

used in the implementation, and section 4.5 discusses the parameter settings for the

proposed Algorithms. Section 4.6 discusses the measurements that are used to evaluate

the proposed Algorithm. Section 4.7 presents the results of the implementation and

shows the performance of the proposed algorithms. Lastly, Section 4.8 provides a

summary of the chapter.

4.2 Introduction

The proposed Algorithm which has been elaborated and discussed in Chapter Three

is coded using the VC++ programming language. Implementation stages, to get and

compare the results, are elaborated in this chapter. The performance of the proposed

algorithms will be explained in the ensuing sections. Accuracy is measured by

comparing the decrypted the ciphertexts files with the original plain text files.

4.3 Datasets

This section describes the properties and lists some statistics about the utilized

datasets.

For the purpose of this research, the data were downloaded from Project Gutenberg

(www.gutenberg.org), which provides free eBooks and they offer it on their website for

all educational purposes. 10 samples were downloaded with various sizes that will be

http://www.gutenberg.org/

29

used in the process of encrypting and decrypting and searching the inquiry among them

so that the encryption and decryption and search inquiry will be done on the samples.

1st sample is the “Pride and Prejudice” by Jane Austen with the size of 781 KB, the

2nd is The Works of Edgar Allan Poe with the size of 26 KB 3rd is Alice's Adventures

in Wonderland with the size of 170 KB 4th is the Ion sized 55 KB, 5th is A Journal of

the Plague Year size 588 6th is The Adventures of Sherlock Holmes size 594 KB, 7th

is the Moby Dick; Or, The Whale sized 1.2MB 8th is The Yellow Wallpaper with the

size of 50 KB 9th is Frankenstein; Or, The Modern Prometheus size of 440 KB and the

last one is the Importance of Being Earnest: A Trivial Comedy for Serious People size

139 KB.

4.4 Implementation

The proposed Encryption, Decryption, and Search methods, which are used in this

study and the purpose of generating ciphertexts to maintain the security and integrity of

the data that will be stored on the cloud storage, are implemented using the Visual C++

programming language. The chart in Fig. 4.1 shows the implementation’s system

diagram.

 Figure 4.1: CloudCrypto System Diagram

4.4.1 Application modules

The proposed CloudCrypto solution consists of the following modules:

30

- Encryption Module: in this function and as discussed in Chapter Three, the

encryption process of the plain text document of the cloud user is performed, to

generate the ciphertext that will be stored in the cloud as the data of the organization

that needs to be protected.

- Indexing Module: Indexing is done while encrypting the plain text, all encrypted

documents generate an index file containing all the words in the encrypted document.

Index file word entries are the result of the encryption module and they are stored in

ciphertext format. The index file that is generated to provide for fast searching of

inquiries using the Search function. Indexing function is embedded in the encryption

module for faster indexing, rather than using a standalone indexing function. The

indexing happens by using arrays for internal storage in the solutions, and when the

encryption of the plain text finishes the array is sorted and duplicate words are removed.

The index is generated as an array, and then it is written to a text file.

- Search Module: this function is used to search the index files for the query word

submitted by the user which is in ciphertext format. The index file will be downloaded

to the user’s workstation and searched locally, and when a matched document is found,

it will be downloaded in ciphertext format for decryption on the user’s workstation.

- Decryption Module: in this module the ciphertext will be returned into its

original plain text when the user searches for a document, using a ciphertext query,

download the ciphertext document from the cloud storage, and performs the decryption

process using the user’s workstation. In this way, the stored document and the query

will be in ciphertext mode, which prevents outsiders and unauthorized data access to the

stored document and the query.

31

4.5 Experimental results

The elapsed time in milliseconds taken by the Encryption, Decryption, and Inquiry

Search functions to process the 10 selected datasets collected from the Gutenberg

project (www.gutenberg.org) are shown in Table 4.1.

 Table 4.1 Experimental Result

From the previous table, we can notice that as much as the file is getting larger the

time for encryption and Indexing is getting bigger. The time the datasets took for being

encrypted is measured by the difference between the function starting and ending,

resulting the time that is stated in the table. The Indexing time is the time that the

solution took to place the ciphers words of the document in an array then checking the

duplicated words not to repeat the entries of the index file and then storing the words

into the index file, each time a new file is encrypted a new index containing all

encrypted words is created for that file.

Dataset

Name

Dataset Size Functions and Processing Time

Encryption

Time

Decryption

Time

Indexing Time

DataSet 1 781 KB 163,094 MS 147,634 MS 36,221 MS

DataSet 2 26 KB 446,63 MS 15,427 MS 38,641 MS

DataSet 3 170 KB 62,272 MS 39,447 MS 23,246 MS

DataSet 4 55 KB 42,020 MS 26,858 MS 20,487 MS

DataSet 5 588 KB 116,069 MS 87,067 MS 19,553 MS

Data Set 6 594 KB 98,270 MS 80,102 MS 21,466 MS

DataSet 7 1.2 MB 191,919 MS 103,678 MS 31,051 MS

DataSet 8 50 KB 41,209 MS 16,991 MS 25,801 MS

DataSet 9 440 KB 69,467 MS 42,287 MS 31,779 MS

DataSet 10 139 KB 58,358 MS 61,839 MS 30,218 MS

http://www.gutenberg.org/

32

The following image is a sample of plain text from DataSet 1 downloaded from

Project Gutenberg named Pride and Prejudice

Figure 4.2: Plaintext

After decrypting the above plain text with the proposed solution we will be getting a

new file that has all the words encrypted as in the following image

33

Figure 4.3: Ciphered text Diagram

As noticed in the above image all the words have been encrypted generating a new file

that contains a ciphertext that will be used by the organization to be uploaded to the

clouds in order to preserve the security of the data.

34

4.5.1 Evaluation of the Encryption function

 In order to evaluate the proposed solution, the ratio of the encryption to the

decryption is calculated, to check the efficiency of the proposed solution for the

Encryption and placed in Table 4.2 for the selected datasets.

Dataset

Name

Dataset Size Functions and Processing Time

Encryption

Time

Decryption

Time

Ratio of

Encryption /

Decryption Times

DataSet 1 781 KB 163,094 MS 147,634 MS 1.104

DataSet 2 26 KB 20,772 MS 208,867 MS 2.895

DataSet 3 170 KB 62,272 MS 39,447 MS 1.578

DataSet 4 55 KB 42,020 MS 26,858 MS 0.156

DataSet 5 588 KB 116,069 MS 87,067 MS 1.333

DataSet 6 594 KB 98,270 MS 80,102 MS 1.226

DataSet 7 1.2 MB 191,919 MS 103,678 MS 1.851

DataSet 8 50 KB 41,209 MS 16,991 MS 1.770

DataSet 9 440 KB 69,467 MS 42,287 MS 1.642

DataSet 10 139 KB 58,358 MS 61,839 MS 0.943

Average 404.3 115,221.9 62,400 1.7707

Table 4.2 Evaluation Of Encrpytion Function

From the above table, we can see that the ratio of encryption to decryption is

reasonable for the file sizes that have been used in the study.

Table 4.3 shows the time to process a Kilo-Byte (KB) of data for each of the

datasets, in Encryption and Decryption, for the 10 datasets. The average encryption time

per KB for the 10 datasets is 288.991 MS. These results can be used to estimate the

expected times of Encryption and Decryption for other sizes of data, for example, the

estimated encryption time for a 10 MB text document will be around 48 minutes on a

35

standard i5 laptop which was used in this experiment, and much less on a more

powerful workstation.

Dataset

Name

Dataset

Size

Functions and Processing Time

Encryption

Time

(MS)

Encryption

/ KB (MS)

Decryption

Time (MS)

Decryption/KB

(MS)

DataSet 1 781 KB 163,094 MS 208.827 147,634 MS 189.032

DataSet 2 26 KB 44,663 MS 1,717.80 15,427 MS 593.346

DataSet 3 170 KB 62,272 MS 366.305 39,447 MS 232.041

DataSet 4 55 KB 42,020 MS 764 26,858 MS 488.327

DataSet 5 588 KB 116,069 MS 197.396 87,067 MS 148.073

DataSet 6 594 KB 98,270 MS 165.437 80,102 MS 134.851

DataSet 7 1.2 MB 191,919 MS 159.932 103,678 MS 86.398

DataSet 8 50 KB 41,209 MS 824.18 16,991 MS 339.82

DataSet 9 440 KB 69,467 MS 157.879 42,287 MS 96.106

DataSet

10

139 KB 58,358 MS 419.841 61,839 MS 444.884

Total 4043 KB 1,152,219 MS 284.991 621,330 153.680

Table 4.3: Time per KB

4.6 Search results

When searching for a string the application will encrypt the search string with the

same encryption method that is used to encrypt the text files previously, then it will

search among the index files that contain all the words pool within them, then it will

return all the index files that contain the results of the search inquiry that has been done

by the inquirer, as shown in the following image

36

Figure 4.4: Search Result

As shown in figure 4.4 above the search inquiry was the word “Time”, and the

application has encrypted it to the word “Ydme” using the encryption method, then it

returned all the index files that contain the same word “YDME”, so that if there was a

security breach and there was any information leakage or hacking the hackers or the

sniffers will see the word “Ydme” that has no sense or meaning for them and will have

a piece of incomplete information, but for the cloud users when the results come with

the search results they will have the complete information about the place of where they

can get the file that have the searched word inquiry. After the search is completed and

the result is displayed to the user, the application will prompt an option that will enable

the user to download the resulted documents after decrypting them.

37

4.7 Summary

This chapter presented the implementation of the proposed homomorphic

encryption using visual C++ programming Language over several datasets to evaluate

the encryption and decryption along with the search methods. The testing results show

that whenever the text files are getting bigger in size the time that takes for encryption

and decryption gets slightly bigger also.

The search takes time to get the results with respect to the number of the index files,

the much the index files the more time that needed to search through the text files.

Encryption process summary step by step

Encryption time calculation starts Then it follows these actions

1. Then Open encryption key file, read the key, close the file, create and then the

random array

2. Open text document for reading, then create a blank encrypted(output) document for

writing ciphertext on it.

3. Read 1st line from the original document

4. Divide the line into words and loop through each word, extract character pairs from

each word, and encrypt each word. Here if character pair has a special character or if a

word on encryption generates an encrypted word containing special characters, then

some other function has to be called for managing these situations. In effect encrypting,

two characters have different execution loads depending on the characters in each pair.

so all character pairs are not encrypted at the same speed.

5 Store each word in an array in encrypted form.

6. After encrypting all words in 1st line, write that line back to the output text file.

7. Repeat steps 2 to 5 until the end of the file.

38

8. Close the both original and output file

9. Time to complete steps 1 to 8 is calculated, this is the encryption time.

10. Sort the array contain words in the file.

11. Delete duplicate words from the array.

12 Write the index array to a file.

13 Calculate time between steps 10 to 12 to get the indexing time

Steps 1, 2, and 8 take the same time irrespective of the document size. So

encryption time has two components, a fixed time component and variable time

component depending on file size.

While the ratio is higher for smaller files and smaller for larger files. So the ratio

tends to reach a constant value as file size increases.

39

Chapter Five

Conclusion and Future

Work

40

5.1 Conclusion

In this thesis, a new encryption method for text Homomorphic Encryption is

proposed, which is aimed to preserve the users of the cloud data integrity and elements

the unauthorized usage of the data from unauthorized personals either from the same

organization or the cloud providers, also the hackers who might have access to the cloud

and teal the data or might get access to the data through any means like the connection

to the cloud servers. Most of the previous studies and works that have been all have

included arbitrary and especially addition or multiplication deduction on the ciphertext

that is stored on the cloud storage or at the local PCs of the user. Also introducing the

search method for words without the need to pull that from the clouds server and search

on it and then upload it back to the clouds again which is very time consuming and cost

consuming also. The contributions of this thesis are as follows:

 1. Introducing a new method of Encrypting data that ensures data integrity and secrecy.

 2. The proposed Encryption methods use a secret key of 64 bits and unique methods

that have been used for this issue.

 3. Indexing the ciphertexts into index files for making the search easier.

4. Information retrieval method for the data without compromising the data for

unauthorized data access.

5.2 Future Work

Based on the present research on Homomorphic Encryption for text

docum9fhxbxcents, the following ideas are suggested for future work:

 The proposed Homomprhic Encryption model for text documents can be extended to

deal with multi-word and multi-term queries.

 The proposed model can be implemented within a standard textual database system.

41

 Investigating the enhancement of time efficiency of the proposed model for multi

gigabytes corpora

 Investigate the integration of the proposed model with the traditional homomorphic

encryption of arbitrary functions.

42

References :

Tharam Dillon & Chen Wu and Elizabeth Chang (2010), Cloud Computing: Issues and

Challenges, IEEE International Conference on Advanced Information Networking

and Applications DOI: 10.1109/AINA.2010.187

Junjie Peng ; Xuejun Zhang ; Zhou Lei ; Bofeng Zhang ; Wu Zhang ; Qing Li (2009)

Comparison of Several Cloud Computing Platforms DOI: 10.1109/ISISE.2009.94

Durgesh Kumar Mishra, Nilanjan Dey, Bharat Singh Deora, Amit Joshi (2019), ICT for

Competitive Strategies

Ihsan Jabbar, Saad Najim (2016) Using Fully Homomorphic Encryption to Secure

Cloud Computing

Moore, C., O'Neill, M., O'Sullivan, E., Doröz, Y., & Sunar, B. (2014). Practical

homomorphic encryption: A survey IEEE International Symposium on (pp. 2792-

2795). IEEE Computer Society. DOI: 2014.6865753

Lijuan Wang , Lina Ge , Bo Geng , Qiuyue Wang 2019, Encryption Cipher Text

Retrieval Scheme Based on Fully Homomorphic Encryption Enterprise Cloud

Storage.

Ren Xunyi, a , Yan Shiyang (2016) Keyword-based Ciphertext Search Algorithm under

Cloud Storage.

Chen Zhi-gang, Wang Jian, Chen Liqun and Song Xin Review of How to Construct a

Fully Homomorphic.

Encryption Scheme (2014)

Migrating to the cloud: Oracle client/server modernization

Yi, X., Paulet, R., & Bertino, E. (2014). Fully Homomorphic Encryption.

SpringerBriefs in Computer Science.

A. Akavia, D. Feldman, and H. Shaul. 2018. Secure database queries in the cloud:

Homomorphic encryption meets corsets,

https://doi.org/10.1109/AINA.2010.187

43

Adi Akavia, Dan Feldman, and Hayim Shaul 2019, Secure Search via Multi-Ring Fully

Homomorphic EncryptionCraig Gentry Shai Halevi 2009, Implementing Gentry’s

Fully-Homomorphic Encryption Scheme

Craig Gentry 2009 A FULLY HOMOMORPHIC ENCRYPTION SCHEME.

RALUCA ADA POPA (2014) BUILDING PRACTICAL SYSTEMS THAT

COMPUTE ON ENCRYPTED DATA

Shundong LI , Sufang ZHOU , Jiawei DOU2* & Wenli WANG1 (2019) Polynomial

AND homomorphic cryptosystem and applications

S. Terada, H. Nakano, S. Okumura, and A. Miyaji, 2018 On the security of Ring-LWE

with homomorphic encryption.

 M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully Homomorphic

Encryption over the Integers,” Proc. 29th Ann. Int’l Conf. Theory and Applications

of Cryptographic Techniques (EUROCRYPT ’10), pp. 24-43, 2010.

S. Even, O. Goldreich, and A. Lempel, “A Randomized Protocol for Signing

Contracts,” Comm. ACM, vol. 28, no. 6, pp. 637-647, 1985.

C. Gentry and Z. Ramzan, “Single Database Private Information Retrieval with

Constant Communication Rate,” Proc. 32nd Int’l Colloquium on Automata,

Languages and Programming (ICALP ’05), pp. 803-815, 2005.

 C. Gentry, “Computing Arbitrary Functions of Encrypted Data,” Comm. ACM, vol. 53,

no. 3, pp. 97-105, 2010.

 Xun Yi, Mohammed Golam Kaosar, Russell Paulet, and Elisa Bertino, 2013 Single-

Database Private Information Retrieval from Fully Homomorphic Encryption

Coron, J.-S., Mandal, A., Naccache, D., Tibouchi, M. Shorter public keys Fully

homomorphic encryption over the integers with shorter public keys.

R.Kanagavalli and Dr.Vagdevi S,”A Survey of Homomorphic Encryption Schemes in

Cloud Data Storage”,International Journal of Recent Development in Engineering

and Technology,Vol.3,Issue 1,2014,pp.71-75. www.gutenberg.org

http://www.gutenberg.org/

44

https://homomorphicencryption.org/

Payal V.Parmar,et.al ,”Survey of Various Homomorphic Encryption algorithms and

Schemes”,Interational Journal of Computer Applications(0975-8887), Vol.91,No.8,

April 2014,pp.26-32.

K.Mallaiah,S.Ramachandram,”Applicability of Homomorphic Encryption and CryptDB

in Social and Business Applications :Securing Data Stored on the Third Party

Servers while Processing through Applications “,International Journal of Computer

Applications (0975-8887),Vol.100,No.1,2014.

Zvika Brakerski,Craig Gentry and Vinod Vaikunthanathan,”(Leveled) Fully

Homomomorphic Encryption without Bootstrapping”,ACM transactions on

Computation Theory,2014.

 Rachana Jain, Sushila Madan,Bindu Garg,”Homomorphic Framework to Ensure Data

Security in Cloud Environment”,ICICCS 2016, pp.177-181. D:O:I 978-1-5090-

2084- 3/16

Mbarek Marwan,Ali Kartit and Hassan Ouahmane,”Towards a Secure Cloud Database

using Paillier’s Homomorphic Cryptosystem” , IEEE Proceedings ,2016

R.Kanagavalli and Dr.Vagdevi S,”A Mixed Homomorphic Encryption Scheme for

Secure Data Storage in Cloud”, IEEE Intemational Advanced Computing

Conference IACC2015,2015,D.O.I:10.1109/IADCC.2015.7154867.

Debra Littlejohn Shinder Michael Cross. “Scene of the Cybercrime” 2nd Edition

Paperback ISBN: 9781597492768 eBook ISBN: 9780080486994

https://homomorphicencryption.org/

